Final Lab Quiz Study Guide

- ♦ Lab 5
 - Electrophilic Aromatic Substitution: Nitration
 - Substrate benzene ring
 - Added substituents on benzene ring will determine the regioselectivity of the NO₂ group
 - Ortho/Para directors alkyl group, Phenyl, Oxygen or Nitrogen groups with lone pairs (esters, amines, amides), halogens
 - These groups are "activators;" (except for halogens) and donate electrons into the benzene ring
 - Meta directors EWG groups: NO₂, CF₃, C=O, CN, the atom directly attached to the ring will have a positive charge
 - These groups are "deactivators;" and withdraw electrons from the benzene ring
 - Reagents HNO₃/H₂SO₄
 - Product benzene ring with NO₂ group attached
- ♦ Lab 6
 - Aldol Condensation
 - Mechanism of acetone to dibenzylacetone with all counter ions and byproducts included (refer to lab notes)
- ♦ Lab 7
 - Wittig Reaction
 - Substrate aldehydes or ketones
 - Reagents— "Wittig Salt": R group + (PH)₃-P+Cl⁻ and NaOH
 - Product –alkene replaces the oxygen of the aldehyde/ketone carbonyl and adds the R group
 - Be able to determine product: R group is added to substrate via an olefin bond
- ♦ Lab 8
 - Amide Preparation
 - Substrate R + amine group
 - Reagents acetic anhydride
 - Product R + amide and byproduct (acetic acid)
 - What other reagents can you use to produce an amide, and their respective byproducts?
 - Acid chloride (HCl)
 - Carboxylic acid (H₂O)
- ♦ Lab 9
 - Arenediazomonium Salts
 - Substrate aromatic ring

- Reagent arenediazomonium salts (benzene and N≡N⁺Cl⁻ group) and KI
- Product benzene and I
- How do you make the arenediazomonium salt?
 - NaNO₂/HCl
- What other reagents can you use to add a different functional group directly onto the ring?
 - H₃O⁺/heat adds OH
 - HBF₄/heat adds F
 - CuCn adds CN
- ♦ Characterization of your product
 - What does IR tell you about an unknown
 - Functional groups
 - How to use IR to tell the difference between a starting material and a product
 - Melting points
 - If your product is lower than the actual melting point, what does this mean
 - Thin Layer Chromatography
 - How to characterize your product with a standard
 - How to calculate the R_f value from a plate
 - How to determine polarity of the products
- **♦** Calculations
 - Theoretical yield
 - Actual yield
 - o Percent yield